Lesson 9-4

Example 1 Factor $\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$

a. Factor $4 x^{2}+8 x-5$.

In this trinomial, $a=4, b=8$ and $c=-5$. You need to find two numbers whose sum is 8 and whose product is $4 \cdot-5$ or -20 . Make an organized list of the factors of -20 , and look for the pair of factors whose sum is 8 .

$$
\begin{array}{lll}
\text { Factors of -20 } & \text { Sum of Factors } \\
-1,20 & 19
\end{array} \quad \begin{array}{ll}
1,-20 & -19
\end{array} \quad \text { The correct factors are }-2 \text { and } 10 .
$$

Check: You can check this result by multiplying the two factors.

$$
\begin{array}{rlrl}
(2 x-1)(2 x+5)= & 4 x^{2}+10 x-2 x-5 & & \\
& =4 x^{2}+8 x-5 & & \text { FOIL method } \\
\text { Simplify } .
\end{array}
$$

b. Factor $3 x^{2}+11 x+10$.

In this trinomial, $a=3, b=11$ and $c=10$. You need to find two numbers whose sum is 11 and whose product is $3 \cdot 10$ or 30 . Make an organized list of the factors of 30 , and look for the pair of factors whose sum is 11 .

Factors of $30 \quad$ Sum of Factors

1, 30
31
2,15 17
3, $10 \quad 13$
5,6 11
$3 x^{2}+11 x+10=3 x^{2}+m x+n x+10$
$=3 x^{2}+5 x+6 x+10$
$=\left(3 x^{2}+5 x\right)+(6 x+10)$
$=x(3 x+5)+2(3 x+5)$
$=(3 x+5)(x+2)$
The correct factors are 5 and 6.
Write the pattern.
$m=5$ and $n=6$
Group terms with common factors.
Factor the GCF from each grouping.
Factor out the common factor $3 x+5$.

Example 2 Factor when $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} Have a Common Factor

Factor 36x ${ }^{2}+\mathbf{6 x} \mathbf{- 1 2}$.
Notice that the GCF of the terms $36 x^{2}, 6 x$, and -12 is 6 . When the GCF of the terms of a trinomial is an integer other than 1 , you should first factor out this GCF.
$36 x^{2}+6 x-12=6\left(6 x^{2}+x-2\right) \quad$ Distributive Property
Now factor $6 x^{2}+x-2$. You need to find two numbers who sum is 1 and whose product is $6 \cdot-2$ or -12 .

Factors of $\mathbf{- 1 2}$
-1, 12
1, -12
-2, 6
2, -6
$-3,4 \quad-1$
3, $-4 \quad-1$
11
-11
4
-4

Sum of Factors

1 The correct factors are -3 and 4 .
$6 x^{2}+x-2=6 x^{2}+m x+n x-2 \quad$ Write the pattern.

$$
=6 x^{2}-3 x+4 x-2 \quad m=-3 \text { and } n=4
$$

$$
=\left(6 x^{2}-3 x\right)+(4 x-2)
$$

Group terms with common factors.

$$
=3 x(2 x-1)+2(2 x-1)
$$

Factor the GCF from each grouping.

$$
=(2 x-1)(3 x+2)
$$

Factor out the common factor $2 x-1$.
Thus the complete factorization is $36 x^{2}+6 x-12=6(2 x-1)(3 x+2)$.

Example 3 Determine Whether a Polynomial is Prime

Factor $3 x^{2}-x+1$.
In this trinomial, $a=3, b=-1$ and $c=1$. Since b is negative, $m+n$ is negative. Since c is positive, $m n$ is positive. So, m and n must be negative. Therefore, make a list of the factors of $3 \cdot 1$ or 3 , where both factors are negative. Look for a pair of factors whose sum is -1 .

Sum of Factors

$-1,-3$
-4
There are no factors whose sum is -1 . Therefore, $3 x^{2}-x+1$ cannot be factored using integers. Thus, $3 x^{2}-x+1$ is a prime polynomial.

Example 4 Solve Equations by Factoring

Solve $\boldsymbol{k}^{2}+\frac{8}{3} \boldsymbol{k}=\mathbf{1}$. Check your solutions.

$$
\begin{array}{rlr}
k^{2}+\frac{8}{3} k & =1 \\
3\left(k^{2}+\frac{8}{3} k\right) & =3(1) & \\
3 k^{2}+8 k & =3 & \\
3 k^{2}+8 k-3=0 & \\
(3 k-1)(k+3)=0 & & \\
3 k-1=0 & \text { or } & k+3=0 \\
3 k=1 & & k=-3 \\
k=\frac{1}{3} & &
\end{array}
$$

Original equation.
Eliminate fractions by multiplying each side by 3 .
Distributive Property
Rewrite so that one side equals 0 .
Factor the left side.
Zero Product Property
Solve each equation.

The solution set is $\left\{-3, \frac{1}{3}\right\}$.
Check: $\quad k^{2}+\frac{8}{3} k=1$
$k^{2}+\frac{8}{3} k=1$

$$
\begin{array}{rlrl}
(-3)^{2}+\frac{8}{3}(-3) & \stackrel{?}{=} 1 & \left(\frac{1}{3}\right)^{2}+\frac{8}{3}\left(\frac{1}{3}\right) \stackrel{?}{=} 1 \\
9+\frac{-24}{3} & \stackrel{?}{=} 1 & \frac{1}{9}+\frac{8}{9} & \stackrel{?}{=} 1 \\
1 & =1 & 1 & =1
\end{array}
$$

Example 5 Solve Real-World Problems by Factoring

A ball is thrown from the top of a building that is $\mathbf{3 4}$ feet above ground. How long until the ball is 10 feet above the ground?
Use the model for vertical motion. Let $s=34, v=40$, and $h=10$.

$$
\begin{array}{ll}
h=-16 t^{2}+40 t+s & \text { Vertical motion model } \\
10=-16 t^{2}+40 t+34 & \text { Substitute. } \\
0=-16 t^{2}+40 t+24 & \text { Subtract } 10 \text { from each side. } \\
0=-8\left(2 t^{2}-5 t+3\right) & \text { Factor out }-8 . \\
0=\left(2 t^{2}-5 t+3\right) & \text { Divide each side by }-8 . \\
0=(2 t+1)(t-3) & \text { Factor } 2 t^{2}-5 t+3 . \\
2 t+1=0 \quad \text { or } \quad t-3=0 & \text { Zero Product Property } \\
2 t=-1 & \text { Solve each equation. } \\
t=-\frac{1}{2} &
\end{array}
$$

The solutions are $-\frac{1}{2}$ and 3 seconds. The only reasonable solution is the positive 3 seconds, therefore, the ball will reach a height of 10 feet after 3 seconds.

