Lesson 9-4

Example 1 Factor $ax^2 + bx + c$

a. Factor $4x^2 + 8x - 5$.

In this trinomial, a = 4, b = 8 and c = -5. You need to find two numbers whose sum is 8 and whose product is $4 \cdot -5$ or -20. Make an organized list of the factors of -20, and look for the pair of factors whose sum is 8.

Factors of -20	Sum of Fac	tors		
-1, 20	19			
1, -20	-19			
-2, 10	8	The correct factors are -2 and 10 .		
2, -10	-8			
-4, 5	1			
4, -5	-1			
$4x^2 + 8x - 5 = 4x^2 + mx + nx + nx + nx + nx + nx + nx + nx$	- 5	Write the pattern.		
$=4x^{2} + -2x + 10x$	- 5	m = -2 and $n = 10$		
$=(4x^{2}+-2x)+(10x-5)$		Group terms with common factors.		
=2x(2x-1)+5(2	(x-1)	Factor the GCF from each grouping.		
=(2x-1)(2x+5)		2x - 1 is the common factor.		
Check: You can check this result by multiplying the two factors				

Check: You can check this result by multiplying the two factors. F O I L

$$(2x-1)(2x+5) = 4x^2 + 10x - 2x - 5$$

= $4x^2 + 8x - 5$ FOIL method
Simplify.

b. Factor $3x^2 + 11x + 10$.

In this trinomial, a = 3, b = 11 and c = 10. You need to find two numbers whose sum is 11 and whose product is $3 \cdot 10$ or 30. Make an organized list of the factors of 30, and look for the pair of factors whose sum is 11.

Factors of 30	Sum of Fa	actors
1, 30	31	
2, 15	17	
3, 10	13	
5, 6	11	The correct factors are 5 and 6.
$3x^2 + 11x + 10 = 3x^2 + mx + m$	nx + 10	Write the pattern.
$=3x^2+5x+6x+6x$	+ 10	m = 5 and $n = 6$
$=(3x^{2}+5x)+(6)$	5x + 10)	Group terms with common factors.
=x(3x+5)+2(3)	(3x + 5)	Factor the GCF from each grouping.
=(3x+5)(x+2))	Factor out the common factor $3x + 5$.

Example 2 Factor when *a*, *b*, and *c* Have a Common Factor

Factor 36 x^2 + 6x - 12.

Notice that the GCF of the terms $36x^2$, 6x, and -12 is 6. When the GCF of the terms of a trinomial is an integer other than 1, you should first factor out this GCF.

 $36x^{2} + 6x - 12 = 6(6x^{2} + x - 2)$ **Distributive Property** Now factor $6x^2 + x - 2$. You need to find two numbers who sum is 1 and whose product is $6 \cdot -2$ or -12. Factors of -12 **Sum of Factors** -1.12 11 1, -12 -11 -2,6 4 2, -6 -4 -3, 4 1 The correct factors are -3 and 4. 3, -4 -1 $6x^{2} + x - 2 = 6x^{2} + mx + nx - 2$ Write the pattern. $= 6x^2 - 3x + 4x - 2$ m = -3 and n = 4 $=(6x^{2}-3x)+(4x-2)$ Group terms with common factors. = 3x(2x - 1) + 2(2x - 1)Factor the GCF from each grouping. =(2x-1)(3x+2)Factor out the common factor 2x - 1.

Thus the complete factorization is $36x^2 + 6x - 12 = 6(2x - 1)(3x + 2)$.

Example 3 Determine Whether a Polynomial is Prime

Factor 3 $x^2 - x + 1$ **.**

In this trinomial, a = 3, b = -1 and c = 1. Since b is negative, m + n is negative. Since c is positive, mn is positive. So, m and n must be negative. Therefore, make a list of the factors of $3 \cdot 1$ or 3, where both factors are negative. Look for a pair of factors whose sum is -1.

Factors of 3	Sum of Factors
-1, -3	-4

There are no factors whose sum is -1. Therefore, $3x^2 - x + 1$ cannot be factored using integers. Thus, $3x^2 - x + 1$ is a prime polynomial.

Example 4 Solve Equations by Factoring

Solve $k^2 + \frac{8}{2}k = 1$. Check your solutions. $k^{2} + \frac{8}{3}k = 1$ Original equation. $3(k^2 + \frac{8}{3}k) = 3(1)$ Eliminate fractions by multiplying each side by 3. $3k^2 + 8k = 3$ **Distributive Property** $3k^2 + 8k - 3 = 0$ Rewrite so that one side equals 0. (3k-1)(k+3) = 0Factor the left side. 3k - 1 = 0 or k + 3 = 03k - 1 k = -3Zero Product Property Solve each equation. $k = \frac{1}{3}$ The solution set is $\{-3, \frac{1}{3}\}$. $k^2 + \frac{8}{3}k = 1$ $k^2 + \frac{8}{3}k = 1$ Check: $(-3)^{2} + \frac{8}{3}(-3) \stackrel{?}{=} 1$ $(\frac{1}{3})^{2} + \frac{8}{3}(\frac{1}{3}) \stackrel{?}{=} 1$ $9 + \frac{-24}{3} \stackrel{?}{=} 1$ $\frac{1}{9} + \frac{8}{9} \stackrel{?}{=} 1$

Example 5 Solve Real-World Problems by Factoring A ball is thrown from the top of a building that is 34 feet above ground. How long until the ball is 10 feet above the ground?

1=1 ✓

Use the model for vertical motion. Let s = 34, v = 40, and h = 10.

1=1 ✓

$h = -16t^2 + 40t + s$	Vertical motion model
$10 = -16t^2 + 40t + 34$	Substitute.
$0 = -16t^2 + 40t + 24$	Subtract 10 from each side.
$0 = -8(2t^2 - 5t + 3)$	Factor out –8.
$0 = (2t^2 - 5t + 3)$	Divide each side by –8.
0 = (2t + 1)(t - 3)	Factor $2t^2 - 5t + 3$.
2t + 1 = 0 or $t - 3 = 0$	Zero Product Property
2t = -1 $t = 3$	Solve each equation.
. 1	
$i = -\frac{1}{2}$	

The solutions are $-\frac{1}{2}$ and 3 seconds. The only reasonable solution is the positive 3 seconds, therefore, the ball will reach a height of 10 feet after 3 seconds.